青岛净达过滤技术有限公司介绍净化空调空气过滤器知识

试验中,每经过一段发尘试验,测量不发尘状态下过滤器前后采样点高效滤纸的通光量,通过比较滤纸通光量的差别,用规定计算方法得出所谓过滤效率

一、空气过滤原理

粉尘与过滤介质的粘接力 空气中的尘埃粒子,或随气流做惯性运动,或做无规则运动,或受某种场力的作用而移动,当运动中的粒子撞到障碍物,粒子与障碍物之间的范德瓦尔斯力使他们粘在一起。

过滤介质材料 应能既有效地拦截尘埃粒子,又不对气流形成过大的阻力。杂乱交织的纤维形成对粒子的无数道屏障,纤维间宽阔的空间允许气流顺利通过。 

目前广泛使用的材料有玻璃纤维、聚丙烯纤维、聚酯纤维、植物纤维等。

与粉尘撞击过滤介质的运动规律来解释,常见的过滤机理分为惯性原理、扩散原理、静电力。

大颗粒粉尘在气流中作惯性运动。气流遇障绕行,粉尘因惯性偏离气流方向并撞到障碍物上。粒子越大,惯性力越强,撞击障碍物的可能性越大,因此过滤效果越好。小颗粒粉尘作无规则的布朗运动.粉尘越小,无规则运动越剧烈,撞击障碍物的机会越多,因此过滤效果越好。 

空气中小颗粒粉尘主要作布朗运动,粒子越小,过滤器的效率越高;大颗粒粉尘主要作惯性运动,粒子越大,过滤器的效率越高。扩散和惯性效果都不明显的那部分粉尘最难过滤,对过滤器性能而言,过滤效率最低点的效率值最具代表性。

若过滤材料带静电或粉尘带静电,过滤效果可以明显改善。其原因主要有两条:静电使粉尘改变运动轨迹并撞向障碍物;静电力使粉尘在介质上粘得更牢固。

过滤器阻力 被捕捉的粉尘对气流产生附加阻力,使用中过滤器的阻力会逐渐增加。被捕捉到的粉尘与过滤介质合为一体而形成附加的障碍物,所以使用中过滤器的过滤效率也会有所提高。被捕捉的粉尘大都聚集在过滤材料的迎风面上。滤料面积越大,能容纳的粉尘越多,过滤器的使用寿命就越长。

滤材上积尘越多,阻力越大。当阻力大到不合理的程度时,过滤器报废。有时,过大的阻力会使过滤器上已捕捉到的灰尘飞散,出现这种危险时,过滤器也该报废。

过滤器阻力随气流量的增加而提高,通过增大过滤材料面积,可以降低穿过滤料的相对风速,以减小过滤器阻力。

新过滤器的阻力为初阻力,对应的报废为终阻力。终阻力=2~4初阻力。

二、过滤效率与试验方法

过滤器效率的实际含义和具体数值因试验方法的不同而大不一样。在工程上,为了省事并为了减少误解,出现了几种用代号表示效率规格的方法。

2.1 一般通风过滤器试验方法

计重法 

试验尘源为大粒径、高浓度标准粉尘。粉尘的主要成分是经筛选的、规定地区的浮尘,再掺入规定量的细碳黑和短纤维。大多数国家规定使用美国亚利桑那荒漠地带的“道路尘”,中国标准曾规定使用黄土高原某村落的尘土,日本标准规定使用源于日本的“关东亚黏土”。测量的“量”为粉尘重量。

过滤器装在标准试验风洞内,上风端连续发尘。每隔一段时间,测量穿过过滤器的粉尘重量或过滤器上的集尘量,由此得到过滤器在该阶段按粉尘重量计算的过滤效率。最终的计重效率是各试验阶段效率依发尘量的加权平均值。

计重法试验的终止试验的条件为:约定的终阻力值,或效率明显下降时。这里的所谓“约定”是指客户与试验者间的约定,或试验者自己的规定。显然,约定终止试验的条件不同,计重效率值就不同。

终止试验时,过滤器容纳试验粉尘的重量称为“容尘量”。

计重法用于测量低效率过滤器,那些过滤器一般用于中央空调系统中的预过滤。

计重法试验是破坏性试验,不能用于制造厂的日常产品性能检验。

比色法

试验台和试验粉尘与计重法所用相同。粉尘“量”为采样点高效滤纸的通光量。

在过滤器前后采样,采样头上有高效滤纸,显然,过滤器前后采样点高效滤纸的污染程度会不同。试验中,每经过一段发尘试验,测量不发尘状态下过滤器前后采样点高效滤纸的通光量,通过比较滤纸通光量的差别,用规定计算方法得出所谓“过滤效率”。最终的比色效率是试验全过程各阶段效率值依发尘量的加权平均值。

终止试验的条件与计重法条件相似:约定的终阻力值,或效率明显下降时。

比色法用于测量效率较高的一般通风用过滤器,空调系统中的大部分过滤器属于这种过滤器。比色法曾是国外通行的试验方法,这种方法逐渐被计数法所取代。严格的比色法是破坏性试验。

大气尘计数法

尘源为自然大气中的“大气尘”。粉尘的“量”为大于等于某粒径的全部颗粒物个数。测量粉尘的仪器为普通光学或激光尘埃粒子计数器。效率值为新过滤器的初始效率。

大气尘计数法用于测量一般通风用过滤器。其效率值只代表新过滤器的性能。

中国的效率分级是建立在大气尘计数法基础上的。

计数法

试验台与计重法和比色法所用类似,发尘所用的高浓度试验粉尘也与计重法和比色法所用类似。粉尘的“量”是微小粒径段颗粒物的个数。测量粉尘的仪器为激光粒子计数器。

试验过程中,在每次发尘试验的之前和之后,进行计数测量,并计算过滤器对各种粒径颗粒物的过滤效率。当达到终止试验的条件时停止试验。过滤器的典型效率值是在规定粒径范围内,各阶段瞬时效率依发尘量的加权平均值。

欧洲标准规定,计数测量时使用的特定的多分散相液滴,如用Laskin喷管吹出的DEHS喷雾,或使用与标定计数器所用标准颗粒物相同的Latex乳胶球。美国规定计数测量使用漂白粉。

计数效率不再是个单一的数值,而是一条沿不同粒径的过滤效率曲线。欧洲的试验表明,当试验的终阻力为450Pa时,0.4µ放m处的计数效率值与传统比色法效率值接近。美国标准规定针对不同档次的过滤器测量不同粒径范围的效率值,其试验终阻力仍是“2倍初阻力或更高”。

2.2 过滤器按效率分级

用不同方法测出的过滤效率值可能相差很大,例如,一只计策法95%的过滤器,若用比色法测量出的效率可能只有30%,用DOP法测试可能根本就测不出任何效率。为了方便,人们经常使用代号来表示过滤器的效率。

目前在国内,“初、中、高”的说法仍最普及,占第二位的是欧洲的G~F~H~U分

类,再往后是欧洲早期的EU分类,美国分类方法尚不流行。目前不存在被世界各国以及各行各业都接受的效率标识方案,今后若干年内也难出现。

2.3 健全测试手段是过滤器行业当务之急

目前国内过滤器厂商难以为市场提供高质量产品,其最主要原因是测试技术而不是制造技术。

高效过滤器出厂前必须经过逐台性能试验,这在国外是不言而喻的事,而国内众多过滤器制造厂中有检测手段的不足5%,即使有也不是全检。测试手段不完善,国产过滤器的市场表现就只能限于低档次、小批量、非正常行为的竞争。

此外,国内的高效过滤器试验方法应尽快与国际接轨。半导体待业已经明确拒绝传统的钠盐法和DOP法,没有扫描台的厂商很难将过滤器卖给新建的芯片厂,而今后几年国内新建芯片厂将需要数亿元的高效过滤器,如果不迅速采取行动,这个大生意将没国内过滤器厂家的事。

具有一般通风用过滤器试验台的国内厂家屈指可数,这使得大多数国产通风过滤器的性能没有保证。过滤器主流厂家有实力添置最好的试验台,但他们没有意识到性能试验的重要性。